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Note 

Slowly Pulsating Axisymmetric Systems in General Relativity 

1. INTRODUCTION 

Levy has investigated gravitational induction for slowly moving but permanently 
axisymmetric systems using a perturbation method [I]. (See also [2, 31.) 

He assumes a metric gij , which is independent of the variable x3, i.e., 

Then he chooses the coordinate curves x0, x1, x2 to lie in the surfaces x3 = constant, 
obtaining 

&x3 = 0 for cy = 0, 1,2. 

Here x1, x2, and x3 are to be interpreted as a generalization of cylindrical polar 
coordinates, and x0 as the time coordinate, 

x0 = t , x1 = r 3 x2 = 2 2 and x3 = +. 

Then the vacuum field equations .Rii = 0 reduce to seven, as the coordinate 
conditions lead to 

Ro3 = RI3 = R2s = 0. 

One then defines a matrix 

ezr 0 0 0 
0 -e2k-2u 0 0 

aij = 
0 0 me2k-2u 

i 

0 ’ 

0 0 0 -r2e-2U 

where both u and k depend on x0, x1, and x2. Thus acj has the form of the static 
metric when Weyl’s canonical coordinates are used. One also assumes that the 
matrix aij satisfies the static vacuum field equations, 

ml = 0, 

1 ak -4auau 
r iLz ar a.2 . 
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Therefore uii is the Weyl metric if the motion ceases. In general, though, Levy 
assumes 

and also h,, = 0, 01 = 0, 1,2. Here hij is to be seen as a “correction” term. 
Assuming that the motion is slow, then if u is a characteristic velocity of the 

source 1 u/c 1 N O(E), where E is a small parameter, and because g,, --+ ai as 
E + 0, hi3 - O(E). Also, 

apt - O(E). 

The zero order vacuum field equations are, of course, the Weyl equations. Levy 
calculates the first order equations O(E) and obtains two sets of field equations. 

Group I: R, = RI1 = Rzz = Rs3 = RI2 = 0. 

These equations contain the five functions /zoo , hll , h,, , h,, , hIa as well as U, k 
and their space derivatives. 

Group II: R, = Roz = 0. 

These two equations contain only h 01 , /z,,~ as well as U, k and their time derivatives 
as well as space derivatives. (The tensor components thus split up into two groups, 
and we will for convenience denote the indices of Group I by A and those of 
Group II by B; thus RA represents &, R,, , Rz2 , RB3 , or RI2 and Re represents 
Rol or h2 .I 

One may therefore assume that h, = 0, since Group I does not contain informa- 
tion on the development of the system; this means RA = 0. Also, if one assumes 
that, for an isolated source, space is asymptotically flat, then the coordinate 
system may be identified asymptotically with flat space cylindrical polars. So in 
terms of the spherical polar coordinate R, where R2 = r2 + z2, the boundary 
conditions are u N @R-l), h, N @R-l), and k N O(R-3. The last condition 
comes from the zero order field equations. Thus one can assume that in this case, 
as V2u = 0, 

u = 5 [An/R”+‘] P,(cos 8), 
?Z=O 

where A, = A,(t). Also k is of the form 

k = A,2f(B)/R2 + --* . 
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Levy then examines the first order equations RB = 0. He obtains an expression 
which by comparison with Newtonian theory can be identified as representing a 
Poynting vector for gravitational energy transfer. His argument for this largely 
rests on assuming that A,, = 0 and f!l = 0 for an isolated system. The condition 
A, = 0 represents the conservation of mass and is verified by substituting the 
above expressions for u and k in the first order equations. 

The condition A1 = 0 represents the conservation of momentum and can only 
be verified from the second order equations, which are far too complicated to 
obtain by hand. 

2. THE PROGRAMMING SYSTEM LAM 

It was felt desirable to check Levy’s hand calculations and, in addition, to 
obtain the second order equations, O(E~). To this end the author implemented an 
algebraic programming system LAM on the Stockholm IBM 360/75. LAM was 
developed by R. A. d’Inverno on the London ATLAS computer specifically for 
performing calculations in general relativity [4]. LAM is written in LISP [5], and 
users thus require a slight knowledge of that langugage. 

The system consists of four basic packages and one application package for 
tensor calculations. There is a simplification package SIMP which simplifies 
expressions. This, applied to A + A, will return 2A. There is also a differentiation 
package, DIFF, which performs partial differentiation. A package which can 
produce very readable output is called PRT. Thus (8A/8x2)* is written as A,*. 
There is also a package for substitutions. Finally there is a package for tensor 
calculations called GEOM which calculates the usual quantities of Riemannian 
geometry starting from either the covariant metric or both the covariant and 
contravariant metric. For details of LAM, see [6]. 

Although LAM is a relatively simple algebraic system, it has managed to 
perform calculations in general relativity beyond the scope of other systems. 

3. THE SECOND ORDER EQUATIONS 

Using LAM we have repeated the work of Section 1, but we have carried it to 
the second order, i.e., retaining only terms up to O(E~). We explicitly give the 
order of the hij ; that is, instead of hij we write chij , and, similarly, the second 
order correction to the metric which we call pij is given as input in the form l 2pij . 
This is because it is much easier to program the condition 0(c3) = 0. 
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We assume a metric of the form 

g, = e2U + pOOe2, 
go1 = hole +Pol~2, 

go2 = h02E + P02E2, 

go3 = 09 

g,, = -e-au+ak +pUc2, 

a2 = P12E2, 

kh = 09 

gz2 = -e-2u+2k + p22~2, 

g2, = 0, 

g,, = -r2c2u + ps3e2. 

Also we have, as previously stated, that O(8) = 0 and a/at = O(e). 
Since we assume that the contravariant metric may be expanded in powers of E, 

then 
gii = ,ij + hije + pije2. 

Using (uij + h% + pi’c2)(ajk + hjkcE + pikE2) = 8ki, one obtains djajk = ski. 
which gives aii = a;‘, bile = -aijhjkak$, and pile2 = aijhikhnDakm@~2 - aijpjkak+2, 
Hence the contravariant components gij of the metric may be calculated. 

Next the lists for gij and gij are given to the GEOM package, and the condition 
O(E~) = 0 is implemented by using the substitution package and arranging that 
both 8 and c4 be replaced by zero. The condition alat = O(E) is obtained by 
modifying the basic LAM package DIFF. 

Because of storage problems, the Riemann tensor was first stored on tape and 
then special routines calculated the Ricci tensor, which in turn was placed on 
tape. The equations so obtained, Rij = 0, are the vacuum field equations up to 
the second order. They were also obtained by d’Inverno, using the original ALAM 
system [4]. A big advantage, now that they were stored on tape, was that it was 
possible to manipulate these equations within the computer. To do this by hand 
would have been virtually impossible. 

As Levy had conjectured [l], one finds that A1 = 0 in the case of an isolated 
source and, as mentioned previously, represents the conservation of momentum. 
This result is obtained by substituting the multiple expansions for ZJ and k in 
the second order equations. Also, comparison of our first order equations with 
those obtained by Levy showed that the physically interesting equations, RB = 0, 
were the same. No check was made on RA = 0, as we assumed h, = 0 in the 
input. 
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Another immediate result on examining the second order terms is that once 
again the equations fall into the same two groups. 

Group I: RA = 0. 

These equations contain pa as well as U, k, hB and their time derivatives as well as 
space derivatives. 

Group II: RB = 0. 

These two equations contain only pe as well as u, k and their space derivatives. 
Thus, in this case, one may assume pe = 0, as group II does not contain informa- 
tion about the development of the system. Thus RB = 0. 

It may be asked if this behavior continues for all orders. In fact, one finds that 
the field equations RA = 0 only contain terms which are even in the quantities 
g, and a/&?, whereas the field equations RB = 0 only contain terms which are 
odd in the quantities g, and a/8x0. This can be seen if one realizes that ultimately 
Rij consists of tensor operations on gtj and its derivatives. Each time an index 0 
occurs due to a contraction, it must be matched by another index 0. Thus Re 
will have index 0 occurring an odd number of times in every term, whereas R, 
will have index 0 occurring an even number of times in every term. 

The result of this grouping of the Ricci tensor is that one may assume that gB 
may be expanded as 

&(E, 6 r, 4 = %31 + ESggS + *** , (1) 

that is, in only odd powers of E. Also g, may be expanded as 

gAE, 4 r, 4 = gAo + E2gA2 + l 4gA4 + - , (2) 

that is, in only even powers of E. 

4. CHECKING THE RESULTS 

Although the two equations RB = 0 are satisfied if one assumes pB = 0, there 
are still five equations left, I& = 0, each containing between 100 to 150 terms. 
This illustrates a common problem in algebraic computing; namely, the output 
is sometimes of such a size that it is unmanageable by hand. 

Nonetheless one would like to check the field equations obtained, and in general 
relativity this can be done by investigating the contracted Bianchi identities, 
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These are the integrability conditions of the Ricci tensor, and give an identity 
which the metric tensor must satisfy. 

Unfortunately, these identities are rather long and thus, in order to keep the 
size of the calculation within reasonable bounds, the zero and first order field 
equations were used to simplify the Bianchi identities. One must pay for this, 
however, inasmuch as in order to then show that they are satisfied one must use 
the lower order field equations. There are two simplified second order Bianchi 
identities (of the original four, one vanishes by axial symmetry and the other 
may be shown to vanish due to the fact that a/at - O(E)), one of which is 

1 1 
+2y)ae 

2u a& - o 
-@= * 

The other is a similar equation. 
It was thus necessary to calculate some of the derivatives of the Rij . Here the 

calculation began to blow up since each derivative contains between 200 and 
300 terms. However, after simplifying the above expression, it was found that Bl 
contains around 400 terms. (To obtain Bl it was found necessary to store each 
term on tape and call them in one by one.) 

The last stage of the calculations was to reduce this expression to zero using the 
lower order field equations and their first and second derivatives as mentioned 
above. The technique used was as follows. For an equation of the form 
T1 f T2 -/- T3 + a.. = 0 where Tl is a simple term, every occurrence of Tl was 
replaced by -(T2 + T3 + .a*) in Bl. 

Since there are six lower order equations and, with their possible derivatives, 
one obtains over 50 equations, it was important to pick the correct ones, and a 
certain amount of inspection of Bl was needed before each substitution. However, 
Bl was eventually reduced to 20 terms which, on inspection, was seen to be equiva- 
lent to zero. One met with the old problem of how to substitute, a quite difficult 
question when one is faced with so large an expression and so large a number of 
substitution equations. It was decided, at any stage, always to substitute for the 
term which appears least often in the remaining substitution equations. 

By showing that the second order field equations satisfy a Bianchi identity one 
can be quite confident that these equations are correct. 
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